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Abstract. Closed form results for the vortex inertial mass due to the variation of the magnitude
of the superconducting order parameter are presented for ans-wave superconductor. The
evaluation of certain matrix elements which use approximate wavefunction solutions of the
Bogoliubov–de Gennes equations are completed. The results exhibit the dependences upon
microscopic parameters, thus improving upon previous numerical estimates. The analytic
expressions more fully characterize the inertial mass and the core polarizability and are suitable
for incorporation in the vortex mobility at absolute zero. The unscreened vortex-core mass is
sized by using simple BCS relations.

Recently an examination of the vortex inertial mass for ans-wave superconductor has
been recounted [1]. This study was based upon the Bogoliubov–de Gennes equations and
examined only the absolute zero temperature case; it repeated much of the results of an
earlier paper [2]. One idea was to perform a microscopic calculation of the mass, avoiding
a Ginzburg–Landau (GL) treatment. However, as this paper illustrates, that discussion is
incomplete in both the analytic results and in the consideration of contributing mechanisms
and related literature.

Generally an inertial mass calculation is more useful when the dependence on various
parameters is apparent. In particular, to more fully utilize the results of a microscopic
calculation, one would like to exhibit the dependences on parameters such as the Fermi
wavenumberkF, interlayer spacingd, coherence lengthξ , and zero-temperature gap
amplitude10. The numerical results of [1] which finish the calculations tend to conceal
such dependences. After some background remarks on the vortex mass, this paper presents
closed form results first for the unscreened core contributionm∗0 to the vortex mass. Then,
analytic results pertinent to the core dielectric constantεcore are described. Specifically, one
of the definite integrals inεcore is easily evaluated and the convergence of the remaining
integral is discussed with the aid of an asymptotic estimate. An analytic approximation for
the core polarizability is also presented. As the vortex mass of [1, 2] ism∗0 divided by the
core dielectric constant, much progress can be made in developing closed form results.

[1] used the vortex core bound-state wavefunctions of [3] and this practice is continued
here. Comparison of these analytic forms with the numerical results of [4, 5] shows these
to be valuable approximations.

Estimation of the vortex mass is of importance in describing dynamic vortex phenomena
including radiofrequency (rf) response [6, 7] and quantum tunnelling [8]. (If it were possible
to attain the necessary conditions of low temperature and very weak pinning, quantum
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tunnelling of vortices may occur.) A suitable function for describing vortex response is
the complex-valued dynamic mobility [7, 9–11]. The mobility can simultaneously include
the effects of inertia, pinning, flux flow, and flux creep. Knowledge of the vortex mass is
desirable in determining whether to include an inertial term in the equation of motion or
dynamic mobility. The vortex mobility can be written in the limiting case when the viscous
drag force vanishes, where inertial effects should be pronounced [10].

The vortex mobilityµ̃v [9, 11] enters the general relation between velocityv and driving
force f as v = µ̃vf . The driving force in the vortex equation of motion may be, for
instance, the Lorentz force or thermal force. As an example of the dynamic mobility, for
simple harmonic vortex motion,̃µv(ω, B, T ) = (−iωµ+ η + iκp/ω)

−1, whereµ(T ) is the
vortex mass per unit length,η(B, T ) is the viscous drag coefficient, andκp(B, T ) is the
pinning force constant. Hereω is the angular frequency,B the magnetic induction, and
T the temperature. In terms of characteristic lengths, this expression can be written as
µ̃v(ω, B, T ) = η−1(1− iµω/η + iδ2

f λ
−2
C /2)−1, whereλ2

C = Bφ0/µ0κp is the square of the
Campbell (pinning) penetration depth andδ2

f = 2Bφ0/µ0ηω is the square of the flux-flow
skin depth. (The flux quantum isφ0 = hc/2e.) From the mobility, the complex-valued
resistivity associated with vortex motion follows asρ̃v = Bφ0µ̃v.

More generally, in the presence of tensor forces acting on vortices, or for anisotropic
type-II superconductors, the mobility needs to be taken as a tensor [11, 12]. In this situation,
the mobility would include a viscosity tensor, a tensor set of pinning constants, and
off-diagonal contributions from the Hall force. When a tensor vortex effective mass is
required, as perhaps for a layered superconductor, the expression for the mobility is further
complicated.

The inertial mass can arise from variation of the amplitude of the order parameter as
the vortex moves through a type-II superconductor, giving a ‘core’ contribution, or from
additional electromagnetic energy generated by the motion. The resulting inertial mass often
varies directly with a characteristic critical magnetic field and inversely with the square of
a characteristic speed. For a continuous type-II superconductor with Abrikosov vortex the
core contribution is [13]

µcore= 3

8π

φ0

v2
F

Hc1

ln κ
(1)

while the electromagnetic contribution is [12, 13]

µem= φ0

16πc2
Hc2 (2)

and the rest mass is

µ0 = φ0

4πc2
Hc1. (3)

Here vF is the Fermi velocity, andHc1 andHc2 are the lower and upper critical fields,
respectively;κ = λ/ξ with λ the penetration depth is the GL parameter. For a Josephson
vortex in a single Josephson junction, the mass [14] is

µLS = φ0

4πc̄2
Hc1J (4)

where c̄ is the speed of light in the insulating layer andHc1J is the junction lower critical
field. In equations (1)–(4)φ0Hc./8π gives a characteristic magnetic energy per unit length.
Due to the relatively small Fermi velocity and large critical fieldsHc andHc2 the vortex
mass can be appreciably larger in high-Tc materials compared to ‘conventional’ type-II
superconductors [12].
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In [15] an elastic mechanism leading to the inertial mass of a flux line in a type-II
superconductor was introduced. In [16] were discussed some inadequacies of the derivation
and the result for the mass per unit lengthµd. A new identity was deduced which is
suitable for evaluatingµd for arbitrary quasi-particle fractions when the ionic displacement
is non-rotational. This result avoids approximations in the original model [15] and clarifies
the temperature dependence of the fluxon mass.

The possible experimental observation of the local strain field and of other mechanisms
which may be useful in studying the temperature dependence of the vortex inertial mass
has been discussed for example in [10, 16, 17]. In [17] some difficulties with a proposal to
define a vortex mass from the lattice elastic energy were discussed.

In [18] nonlinear vortex dynamics in an ultraclean type-II superconductor were
examined. Theory for weakly nonlinear and either weakly or strongly dispersive wave
propagation in a vortex lattice has been developed. It is found that integrable nonlinear wave
equations govern the electrodynamics. The vortex mass per unit length plays an important
role in these derivations. When there is negligible pinning and drag, the Korteweg–de Vries
(KdV) and cylindrical KdV (CKdV) equations and their two-dimensional generalizations can
be obtained in various geometries. When the Hall force dominates, the dispersion relation
of the linearized problem is modified, leading to the nonlinear Schrödinger equation (NLS)
for the complex amplitude. The detection of such KdV or NLS solitons could provide a
means of studying the Hall coefficient and vortex mass at very low temperature.

1. Evaluation of unscreened core contribution

The unscreened core contributionm∗0 to the vortex mass of [1] follows from a
momentum–momentum correlation function. Then,m∗0 = 4|gx |2/ε1/2 where gx =
(h̄/i)

∫
dr v1/2(r)∂u1/2(r)/∂x and ε1/2 is the energy of the first excited core state. Ingx ,

the momentum operatorpx = (h̄/i)[cosφ∂/∂r − (sinφ/r)∂/∂φ]. The radial dependence of
the core wavefunctions is given byf ±1/2(r) = A1/2J 1

0
(kFr) e−r/2ξ . (HereJn is the Bessel

function of ordern andA1/2 is the normalization constant.)
SinceJ ′0 = −J1 and lettingp ≡ kFξ , it follows that the matrix elementgx [1] can be

written as

gx = − h̄
2ξ

∫∞
0 x dx e−xJ1(px)[J0(px)/2+ pJ1(px)]∫∞

0 x dx e−x [J 2
0 (px)+ J 2

1 (px)]
. (5)

Evaluating the integrals in terms of the complete elliptic integralE(k) = E(π/2, k) and
hypergeometric function2F1 [19] gives

gx = −h̄p
4ξ

[2F1(3/2, 3/2; 2;−4p2)+ 3p2
2F1(3/2, 5/2; 3;−4p2)]

[(2/π)(1+ 4p2)−1E(−4p2)+ (3/2)p2
2F1(3/2, 5/2; 3;−4p2)]

. (6)

It is recalled thatE(k) = (π/2)2F1(−1/2, 1/2; 1; k2).
For ξ = 15 Å, k−1

F = 3.36 Å so that p = 4.47 and the argument
−4p2 = −79.9, E(−4p2) = 9.16776, 2F1(3/2, 3/2; 2;−4p2) = 0.004 556 4632, and
2F1(3/2, 5/2, 3,−4p2) = 0.0022553689, givinggx = −1.12h̄/ξ . These numbers are
suitable for the high-Tc cuprates and there is agreement with the numerical results of [1].
One can also note that the number 1.12' p/4 and the remaining ratio ingx is near unity
for a range ofp values. For large negative arguments of the hypergeometric function, as
here, one can usefully employ the transformations2F1(a, b; c; x) = (1− x)−a2F1(a, c −
b; c; x/(x − 1)) = (1− x)−b2F1(b, c − a; c; x/(x − 1)) in the series evaluation.
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In summary, the unscreened core contribution to the vortex mass is given by

m∗0 =
h̄2k2

F

4ε1/2

[
2F1(3/2, 3/2; 2;−4p2)+ 3p2

2F1(3/2, 5/2; 3;−4p2)

(2/π)(1+ 4p2)−1E(−4p2)+ (3/2)p2
2F1(3/2, 5/2; 3;−4p2)

]2

. (7)

The dependence upon the parametersε1/2, kF, and ξ is therefore shown. Analytic
transformations can be performed, for example, by using the reduction formulae for
contiguous hypergeometric functions [19]. The numerical evaluations of appendix I of
[1] are unnecessary. Using the BCS relationξ = 0.32h̄vF/10 and ε1/2 ' 12

0/2εF gives
the estimate of the prefactorm∗0 ' h̄2k2

F/4ε1/2 ' (5/2)(kFξ)
2me, whereme is the electronic

mass. Forp = 4.47 this gives the estimated size of the bare core massm∗0 ' 50me.

2. Core dielectric constant

Due to the discrete energy levels in the vortex core, there is a screening of the vortex mass.
Then, the mass is given bym∗ = m∗0/(1+ 2π e2M(0)) and it is shown here that progress
can be made in analytically evaluating the factorM(0). Physically,M(0) is a polarizability
due to the core quasi-particles. The core dielectric constantεcore= 1+ 2π e2M(0) can be
written as [1]εcore= 1+ (e2/ξ)L1/ε+−L2

2 where the excitation energyε+− = 2ε1/2. The
integralL2 is the square of the normalization integral and has been evaluated above in the
denominator ofgx ,

L2 =
∫ ∞

0
x dx e−x [J 2

0 (px)+ J 2
1 (px)] =

2

π

E(−4p2)

(1+ 4p2)
+ 3

2
p2

2F1(3/2, 5/2; 3;−4p2). (8)

The other integral

L1 = 4
∫ ∞

0
dx

sinh(xd/ξ)

cosh(xd/ξ)− 1
f 2(x) (9)

has

f (x) =
∫ ∞

0
y dy J0(py)J1(py)J1(xy) e−y. (10)

By way of the expansion of the product of two Bessel functions of like argument [19]

J0(z)J1(z) =
∞∑
m=0

(−1)m(1/2)2m+1(m+ 2)m
(m+ 1)(m!)3

z2m+1 (11)

where(m+ 2)m = 0(2m+ 2)/0(m+ 2), it is possible to writef (x) as an infinite series.
(By the duplication formula, one can write(m+ 2)m = (2π)−1/222m+7/20(m+ 5/2)/(2m+
3)(2m+ 2).) Two equivalent forms of the result are

f (x) = x

4

∞∑
m=0

(−1)m

4m
(m+ 2)m(2m+ 3)!

(m+ 1)(m!)3
(kFξ)

2m+1
2F1(m+ 2, m+ 5/2; 2;−x2) (12)

f (x) =
∞∑
m=0

(−1)m

22m+1

(m+ 2)m(2m+ 3)!

(m+ 1)(m!)3
(kFξ)

2m+1(1+ x2)−(m+3/2)P−1
2(m+1)(1/

√
1+ x2) (13)

as

F(a, a + 1/2; 2; z) = 2(−z)−1/2(1− z)1/2−aP−1
2a−2[(1− z)−1/2] (14)

for −∞ < z < 0. In equations (13) and (14),Pnm is the associated Legendre function of
the first kind [19].
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Before briefly discussing the nature of the integrand ofL1, one can note that many
general forms of this integral can be written, for example

L1 = 4
∫ ∞

0
coth(xd/2ξ)f 2(x) dx (15)

and several others based upon integration by parts. By using the expansionJ1(xy) =
xy/2− x3y3/16+O(x5), one can directly examine the small-argument behaviour off (x)

f (x � 1) = x

2
3kFξ [2F1(3/2, 5/2; 2;−4k2

Fξ
2)− (5/2)x2

2F1(3/2, 7/2; 2;−4k2
Fξ

2)

+(105/8)k2
Fξ

2x2
2F1(5/2, 9/2; 3;−4k2

Fξ
2)]. (16)

This limiting behaviour off is sufficient to guarantee the convergence ofL1 near the origin.
Extending the expansion (16), it is possible to writef (x) as a power series in odd

powers ofx, f (x) =∑∞k=0 ckx
2k+1, where the coefficients are given by

ck = p (−1)k

22(k+1)

(2k + 5)!

k!(k + 1)!
3F2(3/2, k + 2, k + 5/2; 2, 2;−4p2). (17)

This series is developed by writing the series expansion ofJ1(xy) in equation (10) and
using the integral (Laplace transform)∫ ∞

0
yaJ0(y)J1(y) e−by dy = 1

2ba+2
0(a + 2)3F2(3/2, 1+ a/2, (a + 3)/2; 2, 2;−4/b2).

(18)

Although the coefficientsck involve the generalized hypergeometric function3F2, there
is a very useful special relation between the numerator and denominator parameters.
Specifically, the numerator parameterk + 2 exceeds the denominator parameter 2 by the
non-negative integerk. Therefore, fork = 0 this 3F2 immediately reduces to the Gauss
hypergeometric function and fork > 1 the3F2 can be written as a sum of(k+1) 2F1 [20].
As an illustration, thek = 0 andk = 1 cases are particularly simple,

c0 = 30p2F1(3/2, 5/2; 2;−4p2)

c1 = −315

2
p3F2(3/2, 3, 7/2; 2, 2;−4p2)

= − 315

2
p

[
2F1(3/2, 7/2; 2;−4p2)− 21

4
p2

2F1(5/2, 9/2; 3;−4p2)

]
. (19)

For p = 4.47, these evaluate toc0 ' 0.082 2294 andc1 ' −0.041 3491. The general
reduction is given by

3F2(b, c, a + k; d, a; x) =
k∑
`=0

(
k

`

)
(b)`(c)`

(a)`(d)`
x`2F1(b + `, c + `; d + `; x) (20a)

where(a)n = a(a + 1) . . . (a + n − 1) is the Pochhammer symbol. As applied to the3F2

factor in equation (17), this gives

3F2(3/2, k + 5/2, k + 2; 2, 2;−4p2) =
k∑
`=0

(
k

`

)
(3/2)`(k + 5/2)`

[(`+ 1)!] 2

×(−1)`(2p)2`2F1(3/2+ `, k + 5/2+ `; `+ 2;−4p2). (20b)

By taking into account the sharp peak in the coth function at the origin and using
equation (15), it is possible to write forL1 the analytic approximation

L1

4
' 2ξ

d

∫ 2ξ/d

0

f 2(x)

x
dx +

∫ ∞
2ξ/d

f 2(x) dx. (21)
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That is, both the large- and small-argument asymptotic forms of coth have been used. This
approximation is illustrated in the appendix for a simple class of smooth functions.

It is possible to write exactly that

f 2(x) = x2
∞∑
j=0

j∑
k=0

cj−kckx2j . (22)

It is not possible to insert this form into equation (15) and interchange the summation and
integration because the integrand does not appear to be uniformly convergent. However, it
may be possible to use the approximation (21) in some form. If there is a sufficient decrease
in f 2 for large argument, then the second term of equation (21) may be ignored. This leads
to the rough approximation

L1 ≈ 2

(
2ξ

d

)3 ∞∑
j=0

j∑
k=0

cj−kck
(j + 1)

(
2ξ

d

)2j

. (23)

Although the coefficientsck appear to alternate in sign, the prefactor 1/(j + 1) in
equation (17) is not rapidly decreasing, and it therefore appears that many terms should
be taken in this approximation.

3. Alternative evaluation of the normalization integral

There are several other possibilities for analytically evaluating the square of the
normalization constant,L2. There being a close relation between complete elliptic integrals
and Legendre functions, either of these sets of functions can be used instead of the method
above. The use of Legendre functionsQν of the second kind is illustrated here, providing
an alternative to employing the Gauss hypergeometric functionF as previously mentioned.

A starting point can be the two Laplace transforms [19]∫ ∞
0

e−αxJ 2
1
0
(βx) dx = 1

πβ
Q±1/2

(
α2+ 2β2

2β2

)
Reα > 0. (24)

Then differentiation with respect toα and the recursion relations [19]

Q′−1/2(z) =
1

2(z2− 1)
[Q1/2(z)− zQ−1/2(z)]

Q′1/2(z) =
3

2(z2− 1)
[Q3/2(z)− zQ1/2(z)] (25)

gives the results∫ ∞
0
x e−αxJ 2

0 (βx) dx = − 2β

πα

1

(α2+ 4β2)

×
[
Q1/2

(
α2+ β2

2β2

)
−
(
α2+ β2

2β2

)
Q−1/2

(
α2+ β2

2β2

)]
∫ ∞

0
x e−αxJ 2

1 (βx) dx = − 6β

πα

1

(α2+ 4β2)

×
[
Q3/2

(
α2+ β2

2β2

)
−
(
α2+ β2

2β2

)
Q1/2

(
α2+ β2

2β2

)]
. (26)
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Putting β = 1 and α = 1/kFξ , making a change of variable in the integral of
equation (8), and combining the expressions of equation (26) gives for the square of the
normalization constant

L2(kFξ) = − 2

π

(kFξ)
−1

[(kF ξ)−2+ 4]
[3Q3/2(zF)+ (1− 3zF)Q1/2(zF)− zFQ−1/2(zF)] (27)

wherezF ≡ 1+ 1/2(kFξ)
2. WhenzF = 1.025, this evaluates toL2 ' 0.140, in agreement

with equation (8).

4. Summary

The vast majority of numerical computations in [1] have been shown to be unnecessary.
Given that one has made a choice to work analytically with approximate wavefunction
solutions of the Bogoliubov–de Gennes equations, one would like to remain within this
framework. Alternatively, an entirely numerical approach may be more suitable.

The approximatef ±1/2 wavefunctions used here do vary over both the Fermi wavelength
λF = 2π/kF and coherence lengthξ . However, further study may be required to show that
they adequately reflect the variation of the pair potential over these two length scales at low
temperature. The self-consistent solutions of [4] show quantitatively the pair potential at
various temperatures.

The analytic results developed here are needed to further the analysis of the vortex mass
and dynamic mobility, even for a superconductor with an s-wave and BCS-like gap. The
detailed microscopic parameter dependences have been displayed, and this has been done
fully for the unscreened or bare core contribution. Equation (7) shows that the bare mass
is relatively insensitive to the productkFξ over a range of values appropriate to the high-Tc

cuprates. The prefactor ¯h2k2
F/4ε1/2 ' (5/2)(kFξ)

2me directly gives the order of magnitude
of the unscreened vortex mass.

In the absence of pinning, the vortex mobility isµ̃v(ω, B, T ) = 1/(η − iωµ), where
η is the drag coefficient andµ the mass per unit length. In the further absence of the
viscous force, the mobility reduces tõµv = i/ωµ, as expected. This latter situation may
approximately hold at extremely low temperatures for ultraclean type-II superconductors. As
noted in this paper, ultraclean superconductors can have drastically altered vortex dynamics.

The normalization integral of the approximate wavefunctionsf ±1/2 for the last occupied
and first unoccupied bound core states has been evaluated in several different but equivalent
ways, including equations (8) and (27). These are valuable to have in calculating matrix
elements, especially observables.

The functionf (x) of equation (10) is related to the Fourier transform of an integrated
charge density-current correlation function. This function has been evaluated in a variety of
methods, including as a power series inkFξ , equations (12)–(13), and as a power series in
x, equation (17). It can be noted that the dipolar charge distribution generated by rectilinear
vortex motion has been anticipated for anisotropic superconductors in [12]. [1] does not
cite the basic early work of Bardeen and Stephen [21].

Although the coefficientsck in the power series expansion (17) off (x) contain the
generalized hypergeometric function3F2, these have a special form as noted so that they
reduce to sums of the Gauss hypergeometric functionF(a, b; c; z). (Additional information
on the special functions employed here can be found in [20].)

The only quantity remaining to be evaluated exactly in the core polarizabilityM(0) is
the integralL1, equation (9) or (15). An approximation to this integral has been presented
in (21), with a crude approximation explicitly involving theck given in (23). Further study
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should elucidate the limits to these approximations. Alternative approaches include of course
the use of (12) or (13) in equation (15). This would allow the analytic characterization of the
Coulomb screening as a function of interlayer spacing, Fermi wavenumber, and coherence
length.

The results presented here for the vortex mass apply at absolute zero. Their quantitative
form makes them suitable for comparison with other methods, or for contrast with results at
non-zero temperature. By knowing the microscopic parameter dependences, the differences
for non-s-wave superconductors can be better understood. For vortices with an altered
bound core state structure, some modification of the inertial mass can be expected.
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Appendix. The approximation (21)

This appendix illustrates the analytic approximation, equation (21) to equation (15). Some
simple functions are taken in the integrand and the numerical values of the results are used to
verify the approximation. Of course the class of functions forf 2 in (15) must be restricted
in some way. A very tight characterization of the function multiplying coth in (15) is taken
here, namely that it be smooth, meaning infinitely differentiable. It is also assumed to be
sufficiently decreasing for large argument that the integral (15) is convergent. Similarly, for
smallx, it is required that the multiplying function of coth behave asxq for q > 0 in order
to ensure convergence at the lower limit.

A simple class of functions satisfying the above requirements isxp e−x , wherep > 0.
Here the values of

Ip ≡
∫ ∞

0
xp e−x cothx dx (A.1)

are compared to the values of the approximation

Ap ≡
∫ 1

0
xp−1 e−x dx +

∫ ∞
1
xp e−x dx = 0(p + 1)+ 0(p, 0, 1)− 0(p + 1, 0, 1) (A.2)

where the generalized incomplete gamma function0(a, z1, z2) = 0(a, z1) − 0(a, z2) in
terms of the incomplete gamma function0(a, z).

For p = 1/4, one hasI1/4 ' 3.921 35, whileA1/4 = 0(1/4) + 0(5/4) − 0(1/4, 1) −
0(5/4, 0, 1) ' 3.8088, there being a relative error of about 2.9%. Forp = 1/3, one has
I1/3 ' 2.985 95, whileA1/3 = 0(1/3)+0(4/3)−0(1/3, 1)−0(4/3, 0, 1) ' 2.875 88, with
a relative error of 3.7%. Forp = 1, I1 = π2/4− 1 ' 1.4674,A1 = 1+ 1/e' 1.367 88,
with a 6.8% relative error. Whenp = 2, I2 = (7/2)ζ(3) − 2 ' 2.2072, whereζ is the
Riemann zeta function. The approximation (A.2) givesA2 = 1+ 3/e ' 2.103 64, with a
4.7% error. Whenp = 3, I3 = π4/8− 6 ' 6.176 14,A3 = 2+ 11/e ' 6.046 67, with a
2.1% error. Forp = 4, one hasI4 ' 24.2171, andA4 = 6+ 49/e ' 24.0261 with less
than one percent error.

Another set of examples could be based upon the integral

Ip =
∫ ∞

0
xpJ1(x) cothx dx p > −1 (A.3)
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for which an approximation is

Ap =
∫ 1

0
xp−1J1(x) dx +

∫ ∞
1
xpJ1(x) dx

= 2p
0(p/2+ 1)

0(1− p/2) − 1F2(1+ p/2; 2, 2+ p/2;−1/4)/2(2+ p)
+1F2((1+ p)/2; 2, (p + 3)/2;−1/4)/2(1+ p). (A.4)

HereA−1/2 = 0(3/4)/
√

20(5/4) + 1F2(1/4; 5/4, 2;−1/4) − 1F2(3/4; 7/4, 2;−1/4)/3 '
1.615 61,A1/2 =

√
20(5/4)/0(3/4)+1F2(3/4; 7/4, 2;−1/4)/3−1F2(5/4; 2, 9/4,−1/4)/5

' 1.175 49, A0 = J0(1) + 1F2(1/2; 2, 3/2;−1/4)/2 ' 1.244 88 A1 = 2 − J0(1) −
1F2(3/2; 2, 5/2;−1/4)/6 ' 1.080 27, A2 = −J2(1) + 1F2(3/2; 2, 5/2;−1/4)/6 '
0.039 629 2,A3 = −3+ J2(1)− 1F2(5/2; 2, 7/2;−1/4)/10' −2.976 45,A4 = −4J3(1)+
J4(1) + 1F2(5/2; 2, 7/2;−1/4)/10 ' 0.015 579 1, andA5 = 45 + 4J3(1) − J4(1) −
1F2(7/2; 2, 9/2;−1/4)/14 ' 45.0111. The appearance ofJα(1) in Ap follows from the
reduction of1F2 and the relationJα(1) = 0F1(−−;α + 1;−1/4)/2α0(α + 1).
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